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Abstract— Imitation learning (IL) has proven effective across
a wide range of manipulation tasks. However, IL policies often
struggle when faced with out-of-distribution observations; for
instance, when the target object is in a previously unseen
position or occluded by other objects. In these cases, extensive
demonstrations are needed for current IL methods to reach
robust and generalizable behaviors. But when humans are faced
with these sorts of atypical initial states, we often rearrange the
environment for more favorable task execution. For example,
a person might rotate a coffee cup so that it is easier to
grasp the handle, or push a box out of the way so they
can directly grasp their target object. In this work we seek
to equip robot learners with the same capability: enabling
robots to prepare the environment before executing their given
policy. We propose ReSET, an algorithm that takes initial
states — which are outside the policy’s distribution — and
autonomously modifies object poses so that the restructured
scene is similar to training data. Theoretically, we show that
this two step process (rearranging the environment before
rolling out the given policy) reduces the generalization gap.
Practically, our ReSET algorithm combines action-agnostic
human videos with task-agnostic teleoperation data to i) decide
when to modify the scene, ii) predict what simplifying actions
a human would take, and iii) map those predictions into robot
action primitives. Comparisons with diffusion policies, VLAs,
and other baselines show that using ReSET to prepare the
environment enables more robust task execution with equal
amounts of total training data. See videos at our anonymous
website:

I. INTRODUCTION

Robots should be able to learn tasks from human demon-
strations. But learning seemingly simple manipulation tasks
can become challenging under minor variations in the envi-
ronment [1], [2]. Consider a setup in which an agent must
grasp a cup (Figure 1). A visuomotor policy can effectively
complete this grasping task when the cup is directly ob-
servable. However, policies are prone to failure when facing
states outside the training distribution; for example, if visual
access to the object is obstructed by a box. As shown in
Figure |, when we try to execute a direct policy rollout —
and the box is in the way — the robot does not know what
to do, leading to critical mistakes like missing the cup.

One standard approach is to try and overcome this chal-
lenge is by collecting larger and more diverse sets of training
data. Given enough examples, the robot can figure out how to
grasp around the box [3], [4]. However, we hypothesize that
this is not the most efficient or time-effective way to solve
the problem, particularly for long-horizon tasks. Instead,
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we propose an alternate approach based on how humans
go about these inconvenient or unexpected initial states.
Imagine a person faced with the scenario in Figure | —
rather than attempting to reach around the box, humans often
simplify the problem by first restructuring the environment.
For instance, here a person could move the box out of the
way, making the task of grasping the cup much easier to
complete. Inspired by the way humans prepare environments,
our insight is that:

We should design policies that restructure the environment,

bringing diverse start states into a familiar and

manageable distribution before executing the actual task.

Applying this insight we introduce ReSET, Restructuring
States for Efficient policy Training. Rather than learning one
policy that tries to complete the entire task across a broad
range of initial states, under ReSET we learn two policies.
The first policy is a reduction policy that simplifies the initial
state by bringing it into a tighter distribution (e.g., moving
objects out of the way). The second policy — the default
task policy — then completes the task from that known
distribution (e.g., picking up the cup). By efficiently learning
from human teachers how to restructure the environment, we
effectively reduce task variability, enabling default policies to
perform more complex manipulation tasks without requiring
as much total training data.
Overall, we make the following contributions:

Generalization and Data Efficiency. We provide theoretical
analysis that suggests learning a reduction policy on top of a
task policy i) yields a lower generalization gap upper bound,
and ii) requires less total training data.

Flow-Based Approach. We learn a flow-based reduction
policy from action-agnostic human demonstrations and task-
agnostic robot play data. This approach i) determines when
to rearrange objects, ii) predicts how objects should be
manipulated, and iii) maps visual point flows to robot actions.

Experimental Validation. We show that ReSET outper-
forms several state-of-the-art baselines in handling out-of-
distribution states across a range of few-shot task settings.

II. RELATED WORK

Imitation Learning. Recent advances in imitation learning
enable robots to learn policies capable of executing long-
horizon tasks in complex real-world settings [S]-[7]. Diffu-
sion policies [8] model the distribution over actions using de-
noising diffusion probabilistic models, enabling multimodal
behaviors. Flow-matching approaches such as my [9] learn a
continuous velocity field that directly maps noise to actions.
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Robot arm learning to grasp a cup. When encountering an out-of-distribution initial observation Sp (e.g., the cup is obstructed by a box),

conventional approaches train on large-scale datasets and attempt to directly rollout the robot policy 7. As we show, this brute-force approach falls short
when the robot encounters unexpected initial environment states. By contrast, ReSET first learns a reduction policy 7’ based on how humans intuitively
restructure the scene. This reduction policy rearranges objects (e.g., moving the box out of the way) so that the task is easier to perform and has lower
state variance (Sg). Our approach then executes the default task policy 7 from this simplified state distribution to reach the goal state St.

On the other hand, Vision-Language-Action (VLA) models
[7], [10] leverage the generalization capacity of pretrained
large vision-language models, unifying vision, language,
and actions within a shared feature space. But regardless
of whether we use diffusion policies, flow-matching ap-
proaches, or VLAs, the model must fundamentally be able to
work across a diverse set of initial states (e.g., different object
locations, clutter, and visual features). However, few-shot
deployment to scenarios outside of the training distribution
remains an open challenge [11], [12].

Scaffolding Approaches. There are a variety of recent
IL works designed to handle out-of-distribution states. We
broadly refer to these strategies as “scaffolding.” One simple
scaffolding approach is to collect diverse data. Works such
as [13]-[15] improve generalization by acquiring large-scale
real-world datasets. But despite recent advances in data
collection methods [16], [17], gathering millions of diverse
trajectories still remains difficult and costly.

To work around the issue of manual data collection, meth-
ods like [18]-[20] leverage data augmentation or domain
randomization and generate synthetic datasets. In practice,
real world synthetic data can also be produced using gen-
erative models (e.g., diffusion models). However, careful
prompting is required to avoid producing unrealistic or
confusing samples [18], and ultimately there remains a gap
between real data and synthetic images.

The methods most closely related to our proposed ap-
proach are object-centric recovery (OCR) [21] and dynamics-
augmented diffusion policy (Dynamics-DP) [22]. OCR as-
sumes direct access to object positions and learns a recovery
policy by exploiting gradients on the object keypoint mani-
fold within the training data. Dynamics-DP learns a dynam-
ics model from robot play data in simulation and employs

model-based control to generate augmented trajectories that
capture recovery from out-of-distribution states. In practice,
we find that both of these approaches assume access to
ground-truth states and require significantly more training
data that our proposed method. However, the central message
conveyed by these works — reshaping the environment into
a regime more tractable for policy execution — aligns with
our research direction. Building on this perspective, we next
provide a theoretical analysis demonstrating that restructur-
ing can improve the performance of learned policies.

III. THE EFFECTS OF ANCHOR STATES

Returning to our motivating example, consider a robot arm
trying to grasp a cup occluded by a box (see Figure 1).
Existing approaches typically attempt to reason about out-
of-distribution states and directly roll out the policy (i.e.,
maneuvering around the obstruction and grasping the object
without visual access). By contrast, ReSET transforms the
initial state into a set of simpler, more tractable intermediate
states which we call the anchor states. In other words, our
approach first reveals the cup by removing the box, and then
proceeds to execute the given robot policy.

But is breaking the task into two parts and moving to these
anchor states actually data efficient? In this section we show
that — given the same amount of training data — leveraging
a set of anchor states lowers the theoretical upper bound on
the policy’s generalization gap. This enables the policy to
perform successfully across a wider distribution of initial
states. We begin by defining the the generalization gap we
aim to bound and the anchor states we try to enforce.

Definitions. Let s € R be the state of the environment. A
robot policy 7 : s — u maps states to robot actions u € R™.
When executed in an environment with a transition kernel



Py(s|s,u), the policy yields a Markov transition operator
over states [23]:

Tro = ZPg(sl|s7u)7r(u\s) (1)

where 0 € O is the environment dynamics. Starting from
the initial state distribution Sy and executing ¢ actions, the
policy 7 produces a distribution over trajectories through its
interaction with the environment. The induced distribution

over final states can be expressed as S; ~ T ,(Sg). Here

Tt, = Hz,zl T ¢ denotes the ¢-fold composition of the
Markov transition operator, conditioned on both the policy

7 and the environment dynamics 6.

Generalization Gap. Following [24], we define the general-
ization gap of the ¢-fold Markov transition operator induced
by policy 7 as the difference between its expected loss under
the true distribution and its empirical loss on the training set:

A(D, Sy) = E(So)gt){l(Tfre(SO)vgt)} -
,Zl

where S't denotes the desired goal state at time ¢, and the
training dataset is given by D = {(s{, 8})}" ; containing
n samples drawn from the same distribution as the random
variable pair (So,S;). Here I(-,-) denotes a loss function
measuring the discrepancy between the predicted state and
the target state. This generalization gap indicates how well a
policy will perform on new states. We want to constrain the
generalization gap so that the policy performs just as well
on unseen situations as it does on the training data.

)
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Anchor States. We define anchor states as S, ~ T2 »(So),
a set of states that the robot visits under a reduction,policy
7' at timestep a such that 0 < a < t. Anchor states are
a subset of states with a more concentrated distribution,
making them more tractable for the base policy to execute
trajectories from (see Figure 1). Formally, we say that .S,
constitutes an anchor if its distribution is more concentrated
than that of the initial state distribution Sy. We formalize
this condition by requiring that the trace of the covariance
matrix of S, satisfy tr(X,) < tr(Xg). Here & = Cov(S)
is the covariance matrix of S; and the trace of the matrix
is tr(X) = Y1, 07, where o7 denotes the variance of
the d-dimensional state-space along the " dimension. In
our motivating example, S, can represent the set of states
where the box has been removed and the object is directly
observable by the robot. Substituting .S, in Equation (2), we
can rewrite the expression for generalization gap as:

Es, s>[l(T o(T24(50)), $1) | -

n )
Zl 9 (T 50)% Z)

i:l

A(D, S,) =

A. Using Anchor States to Reduce Generalization Error

Next we will show that constraining the state distribution
by creating anchor states can lower the upper bound on the
expected generalization gap, thus improving policy perfor-
mance. We make the following assumptions in our analysis:
i) the operator T/ ¢ is linear and ii) the distribution S is
centered. Formally, we get the tightest upper bound on the
generalization gap sup E[A(D, S,)] < sup E[A(D, Sp)].

We start by establishing a connection between the gener-
alization error A and the spread of states S. Following [25],
we can write the upper bound on the expected generalization
gap, with high probability over the random draw of the
training sample S, by leveraging the Rademacher complexity
of the hypothesis class H:

E[A(D, S)] < 2R, (H; S) 4)

Here SR, (74;S) denotes the Rademacher complexity with
respect to the sample set S = {s1,..., s, }, which measures
how well a hypothesis class H can fit random noise [26].
For a linear hypothesis class h,,(s) = (w, s) with |Jw|| < B,
where w is the parameter vector of the linear hypothesis, the
Rademacher complexity can be expressed as [27]:

®)

Building on our assumption that the distribution of S is
centered, we have E[S] = 0. After combining Equations (4)
and (5), we arrive at the following bound:

Vi) ©
Vn
Equation (6) provides an approximate upper bound on the
generalization error conditioned on a constant norm bound
B of the weights, sample size n, and the covariance of the
state distribution 3. This result suggests that the upper bound
on the generalization gap scales as a function of the variance
in the state distribution. By learning a set of anchor states
that reduces the variance in the state distribution, we can
reduce the upper bound on the generalization gap and thus
improve policy performance on unexpected initial states.
We can also formalize this intuition by examining the state
distribution and analyzing the generalization error bound
from an information-theoretic perspective. Following [24],
the generalization error can be upper bounded as:

E[A(D,S)] < o(

@ \/I(S(),Sb|5t)+1
n

where [ is the information gain and 5; is set of intermediate
states with 0 < b < t. Consider a reduction policy 7’
that leads to a linear transition operator T3/ g which maps
Sy to anchor states, such that S, ~ Ty 9(Sy). By the
data processing inequality [28], any operation on S; yields
I(S0; Sq | S¢) < I(So; Sy | S¢). Furthermore, if the transfor-
mation reduces the effective rank, i.e., rank(Cov(S,)) < d,
then necessarily rank(T. 9) < d, making T, ¢ non-

as n — oo 7
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Left: Network architecture of ReSET. The model consists of three key components: (a) a scoring network f, trained on human videos, which

estimates the likelihood that a base policy will succeed under a given initial configuration; (b) a flow generation network g, which predicts flows encoding
human intuition about how the scene should be restructured into anchor states; and (c) a reduction policy #’ that translates the predicted flows 7T into
executable robot action primitives A. Right: At rollout, the scoring network evaluates the current observation to determine whether it is ready to execute the
base policy. If not, the flow generation network produces a flow plan, and the reduction policy will execute that plan. The scoring network then re-evaluates

the updated scene before deciding whether to proceed with the base policy.

invertible. In this case, provided that Sj is not already
confined to a lower-dimensional subspace, we reach:

I(So; Sa | St) < I(S0; Sy | St) (8)

This provides an alternative analysis that demonstrates con-
centrating S, reduces the information it carries about the
input, thereby tightening the generalization error bound.

B. Reduction and Information-Preservation Trade-off

In Section III-A we prove that reducing the variance in
the state distribution improves the generalization bounds.
However, this may also simultaneously reduce the mutual
information between S, and the goal states S”t such that
I1(Sq;Sq) < I(Sp;Sy), making it harder for the policy
to learn mappings from intermediate states to goal states.
Returning to our motivating example, restructuring the scene
by placing the target at a same position behind the box
reduces the spread of states, but the target remains invisible
to the robot and cannot be reliably grasped. In contrast,
reconstructing the scene by removing the obstacle and ex-
posing the target both reduces the spread of states and
preserves the information necessary for the robot to execute
the subsequent open-loop grasp.

The challenge therefore lies in constructing anchor states
S, that (i) reduce the spread of S; to tighten the generaliza-
tion error bound, while (ii) preserving the mutual information
1(Sq; S4) so that S, remains sufficiently informative about
the final state S,. In the next section we will present our
method, ReSET, where we use action agnostic human videos
as a source to create anchor states that intuitively satisfy both
of these requirements.

IV. RESET

Building on our theoretical analysis, our algorithmic ap-
proach learns a reduction policy that rearranges the environ-
ment so that it is easier for the default policy to succeed.
More formally, the reduction policy takes the initial states
to anchor states. By first compressing the trajectory into
a narrower region of the state space, the reduction policy
ensures that subsequent learning occurs on a distribution
with smaller variance, which improves sample efficiency and
increases the likelihood that the default policy succeeds. In
this section we explain how the reduction policy is learned.

In order to reduce the state distribution into anchor states
while preserving mutual information with the goal states, our
method leverages action-agnostic human videos as a natural
source for constructing anchor states. We recognize that
humans instinctively restructure environments in ways that
simplify task execution, while also maintaining information
relevant to the final goal (e.g., humans move the box so
they can see the target cup). We aim to encode how humans
simplify the initial states — as captured by videos of human
motion — into our reduction policy.

To learn meaningful action plans from how humans re-
structure the environment, we draw inspiration from recent
approaches that leverage action-agnostic videos for policy
learning [29], [30], and represent human videos as point
flows to extract abstract actions. Building on these repre-
sentations, we train a flow-based reduction policy that imi-
tates human strategies and simplifies the environment based
on initial observations. Practically, we propose a learning
framework consisting of three key components:

1) A scoring network that evaluates the environment and



determines if we should keep simplifying the environment
or proceed to rollout the base policy (Figure 2 (a)).

2) A flow generation network that predicts point flows which
captures the intuitive strategies humans will employ to
restructure the environment. (Figure 2 (b)).

3) A task-agnostic reduction policy, 7’. Given the flow
proposed by the flow generation network, 7" will achieve
the desired outcome indicated by the flow (Figure 2 (c)).

In what follows we will discuss each component in detail.

A. Scoring Network

The scoring network determines when to switch from
the reduction policy to the base policy. In other words, it
distinguishes anchor states S, from other initial states. We
introduce the scene score C to quantify how likely it is for
a trained policy to succeed under the initial configuration.
Given a human video O, = {0} } ., the score assigned
to each frame o} is labeled with a fixed temporal prior;
our assumption here is that over the course of the video
the human is reconfiguring the environment into simpler
state. We model this prior using a monotonically decreasing
function with respect to time ¢. Frames closer to the end of
the video receive lower values, indicating that the base policy
is more likely to succeed by rolling out from those later
frames. Specifically, we employ a second-degree polynomial
in the temporal index ¢ with a negative leading coefficient:

2
o (i

Here « and (3 are tunable parameters controlling the scale and
curvature of the decay. We found a parabolic decay helpful
as it provides stronger discrimination at larger values of ¢,
where the curvature increases with ¢. Designers can modify
Equation (9) to other monotonically decreasing functions;
our method is not tied to any specific scoring index.

The scoring network f : O, — C is trained solely on
human motion videos: it predicts the surrogate scene score
of a given observation during rollout with the loss function:

1T

ﬁscore = T Z (f(ot) - ét)

t=1

(10)

We then introduce a threshold on the scene score C and
compare it with the predicted score f(o!) to determine
when to switch from the reduction policy to the base policy
(see Figure 2 right). Returning to our motivating example,
observations where the cup is directly visible receive a lower
score C, indicating that these states are more suitable for
executing the base policy.

B. Flow Generation Network

We now have a way to determine when we need to rear-
range the environment and when we are ready to execute the
default policy. But how should our reduction policy actually
change the environment? Here we draw from human videos.
Our approach attempts to transfer the actions performed by
humans to the robot learner; i.e., we capture how humans

Human Video Robot Video

i

Fig. 3. Our data preprocessing pipeline. Left: we track the point flow of
object movement 7 as a guidance to restructure the environment. Right:
For the robot videos, we locate the object by identifying points with large
displacements. Alongside the point flow, we record the parameters of the
associated action primitive, i.e., the start and end positions, as well as the
rotations of the robot’s end effector.

prepare the environment, and enable robots to recognize
and perform similar motions. The heart of this challenge
is mapping action-agnostic human behaviors (i.e., humans
manipulating objects with their own hands) into embodied
actions the robot arm can perform.

We facilitate transfer across the embodiment gap by lever-
aging object point flows. We record the point flows of manip-
ulated objects 7 in human videos using an off-the-shelf point
tracking foundation model CoTracker3 [31] (see Figure 3).
We then train a flow generation network g : O — T based
on the videos and the extracted point flows. Given an initial
scene observation o, this network predicts a point flow that
represents the most likely object movements consistent with
how humans might have rearranged those objects to reduce
the scene score C. To make point flows 7 easier to predict,
we reduce the temporal resolution of the flow trajectories
by performing linear interpolation on each point sequence
along the temporal dimension. In particular, we down-sample
the trajectories to a fixed horizon of 18 time steps, thereby
preserving the continuous temporal structure of the original
data while maintaining expressiveness.

In order to encode a richer representation of the re-
structuring actions, we seek to model the spatio-temporal
dependencies between points. We adopt a spatiotemporal
transformer architecture inspired by [32] which interleaves
spatial and temporal attention layers (see Figure 2). The input
image is first encoded into patch tokens using a pretrained
DINOv2 encoder [33], yielding a representation of shape
1 x 400 x 768. These tokens are reconstructed by applying
another patching along the spatial dimension with a 5 x 5
grid, resulting in P = 16 patches, each with token dimension
D = 5 x 5 x 768. The patches are then repeated across
T steps, corresponding to the horizon of the point flow to
be predicted. This produces a feature sequence of shape
T x P x D, which is then passed into the flow generator.
Notably, we observe that incorporating a learnable temporal
encoding along the time dimension enhances the model’s
capacity to capture richer point flow representations.

Note that the flow generation network functions as a
planner for restructuring the scene and is not restricted to the
point-flow representation in our method. In our motivating
example, its purpose is to indicate how the obstructor should
be repositioned to reveal the target object behind it. Any
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We evaluated ReSET on four real-world tasks. For each task, the first image illustrates a randomly initialized scene configuration, the second

shows one of the anchor states reached after our reduction policy, and the third shows the subsequent execution of the base policy.

approach capable of emulating human-like reasoning could
serve the same role, such as a vision—language model.

C. Task-Agnostic Flow-Based Reduction Policy

The flow generation network from Section [V-B provides
guidance on how the scene should be manipulated to reach
anchor states and make the task easier to complete. Our final
step is for the robot to actually perform these actions and
restructure the environment. This is our reduction policy: a
mapping from images and predicted point flows into robot
behaviors. Our reduction policy is trained using task-agnostic
teleoperated robot data (e.g., videos of the robot playing
with objects in the environment). In theory, the reduction
policy could map to low-level robot actions. But because it
remains challenging to directly predict fine-grained actions
based on a point flow, our reduction policy instead outputs
the parameters for a set of predefined action primitives.
Across all setups, we observe that reconstruction actions can
be grouped into three categories: (i) pick-and-place, (ii) push-
and-pull, and (iii) rotation. Hence, we need primitives that
can handle these sorts of behaviors.

We represent the action primitive space as A = {(¢,p)},
where ¢ € {c1,ca,c3} denotes the primitive class (pick-
and-place, push-and-pull, rotate), and p are the continuous
parameters associated with each primitive. For example, in
the pick-and-place primitives p are the coordinates for the
pick and the place. Practically, we first get the bounding box
of the manipulated object around the points with the largest
displacement in the scene. The action primitives are then
parsed by a temporal window between the beginning and
end of the detected motion (see Figure 3).

The reduction policy takes as input a point flow 7 and a
robot initial observation OY and predicts an action primitive
A, "o T x O — A. We use a transformer architecture
as backbone. A learnable action token is first initialized
and concatenated with the input tokens, consisting of the
point flow and robot observation features. This joint token
sequence is then processed by the transformer to produce the
predicted action primitive .A. To train 7’ we use a composite
loss that combines classification loss for the primitive type
and regression loss for its parameters. Given model predic-

tions (¢, p), the total loss is defined as:
Ly = Aas Lais (C, é) + )\reg Creg(p; f))a (11

where (c,p) denote the ground-truth primitive type and
parameters. The first term, Lg(c,é) is the cross-entropy
loss over primitive classes, and L, (p,p) is the mean-
squared error (MSE) loss for parameters. The coefficients
Adlss Areg > 0 balance the two objectives.

V. EXPERIMENTS

We experimentally compare ReSET to state-of-the-art al-
ternatives. Within our experiments we evaluate tabletop ob-
ject manipulation tasks that require composite, long-horizon
reasoning by a robot arm. We focus on the interplay be-
tween training data and task performance, aiming to answer
the following question: does introducing a reduction policy
that restructures the environment reduce the effort of data
collection — both for training the reduction policy itself and
for the base model? For demonstrations of our experiments,
please see the accompanying videos.

Baselines. We compare ReSET with multiple visual imitation
learning baselines on a variety of task settings.

1) ReSET Naive: An ablation of ReSET. Rather than
learning a flow-based reduction policy, ReSET Naive directly
maps from the initial observation to corrective actions. The
policy is trained on an augmented dataset that explicitly
aligns initial observations from human demonstrations and
actions from robot play data based on the most similar
flows, measured via the || o ||2 norm of the flow difference.
Comparing to this baseline will show that our flow-based
reduction policy is a necessary component for learning a
more diverse range of reconstructive actions.

2) Diffusion Policy [8]: Uses same rollout policy as our
method, but does not call ReSET to prepare the environment.

3) Dynamics-DP [22]: Generates augmented data on top
of expert demonstrations to train a more robust diffusion
policy. We implement the method introduced in the original
paper and adapted an action decoder proposed by [34], ex-
tending it into a visual dynamics model for Model Predictive
Path Integral (MPPI) [35] Planning.
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Results from our real-world experiments. Each task was evaluated on 15 test scenarios, including out-of-distribution states that were not covered

in the expert robot demonstrations. Top: Success rate over four tasks. Bottom: Performance of ReSET and Diffusion Policy with 20, 40, 60, and 100
demonstrations. We observe that across all tasks ReSET achieves a higher success rate and outperforms the baselines. We also observe that — across
different amounts of data available for training — ReSET achieves a higher success rate as compared to Diffusion Policy.

4) mo [9]: A VLA baseline. The policy leverage large-
scale multimodal training data to align visual perception
with language understanding. We take the flow matching
version of the gy policy, and perform low-memory finetuning
(LoRA) [36] with task specific data for 30,000 steps.

Setup. Our experiments are conducted using a Franka Emika
robot arm on a tabletop manipulation setup. We employ a
GELLO controller [37] to teleoperate the robot, collecting
both the play dataset used for training the reduction policy
and the task-oriented expert dataset used for training the base
policy. The experimental setup incorporates two cameras.
The static side-view camera is used as a primary camera
for all datasets, and the gripper-mounted camera is used as
a secondary camera in the demonstration dataset.

Tasks. We evaluated ReSET against the baselines on four
real-world tasks (see Figure 4).

1) Pick-and-place: Grasp the carrot from its initial location
and deposit it into the bowl.

2) Reveal-and-pick: Actively remove obstructing objects to
uncover the hidden block, then grasp that block.

3) Rotate-and-place: Pick up a screwdriver that is originally
at an angle, and place it parallel to the other tools.

4) Multi-task: Serve either a burger or a banana based on
user input. The two foods are on separate plates.

Results. Figure 5 compares the performance of each method
across the four tasks. All methods are trained on 20 ex-
pert robot demonstrations, with the exception of Dynamics-
DP, which also uses an augmented dataset. We collected
the same amount of augmented data as human data for
fair comparison. ReSET and its naive point-track matching
variant incorporate 20 action-agnostic human videos and 20

minutes of robot play data for each task. We examine the
data efficiency of our approach in the following sections.
Also note that ReSET combines robot play data for all the
tasks and learns a single reduction policy. Each task was
evaluated on 15 test scenarios, approximately 80% of which
featured distributional shifts relative to the training set.

A. How well does ReSET recover from unexpected states?

We found that ReSET learns the restructuring strategies
featured in the human videos and executes the reduction
policy from out-of-distribution states. For example, in the
pick-and-place task, the robot pulls the white bowl towards
the carrot so that it is easier for the base policy to accurately
drop the carrot into the bowl. In the rotate-and-place task,
the robot first rotates the screwdriver into an easier-to-grasp
orientation before picking it up and placing it among other
tools (see Figure 4 and supplemental videos).

In long horizon tasks like reveal-and-pick, ReSET is able
to execute a sequence of reconstructions of the scene until an
anchor state is reached. If the robot observes the block is still
covered under a cup after opening the box, it will proceed to
pick up the cup and reveal the block. In a multi-task setup,
ReSET generates different restructuring actions according to
different instructions (“Serve burger” or “Serve orange”).

B. How does a flow-based reduction policy help?

Comparing ReSET to ReSET Naive underscores the im-
portance of incorporating flow into the reduction model.
ReSET adapts more effectively to variations in the initial
observation, generating richer restructuring plans than the
naive ablation. Indeed, point track matching consistently fails
to handle slight positional shifts of objects. This behavior is
expected: during training for ReSET Naive the same robot



action is often aligned with multiple distinct initial observa-
tions from the human dataset, thereby reducing the effective
diversity of action variants available for learning. Our flow
based reduction policy captures more diverse actions from
robot play data, enabling more flexible and adaptive behavior.

C. Is ReSET more data efficient than the alternatives?

To demonstrate that our method remains data efficient
despite its reliance on both human and robot play data,
we trained diffusion policies with an increased number of
expert robot demonstrations and compared their performance
against ReSET (Figure 5 bottom). We found that diffusion
policies requires at least 70 expert demonstrations for each
task to reach comparable performance. Based on our ex-
perience, collecting this amount of data takes at least one
hour for an expert demonstrator. In contrast, ReSET only
requires about 10 minutes of task-specific human corrections
plus 20 minutes of task-invariant robot play data. This
highlights that with ReSET the robot can recover from out-
of-distribution scenarios with substantially less time spent
collecting demonstrations.

VI. CONCLUSION

In this paper we introduced ReSET, an algorithmic frame-
work that restructures environments for easier task execution.
ReSET learns from two sources of training data: action-
agnostic videos of humans rearranging the scene, and task-
agnostic videos of teleoperated robot play. From the human
videos we extract i) a score that determines whether the robot
should roll-out its base policy or simplify the environment,
and ii) a flow prediction that captures how humans would
manipulate objects. Using the robot play videos, we then
convert these into iii) a policy to map the point flow into
robot actions that interact with the environment and lower
the difficulty score. Overall, our learned approach rearranges
the environment to bring out-of-distribution initial states back
into a smaller, known distribution (i.e., anchor states). Our
theoretical analysis suggests that moving to anchor states
before executing the baseline policy improves generalization
in a data-efficient manner. This analysis is supported by our
experiments, where we show that ReSET leads to higher
performance across multiple tasks and data amounts.
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